
treelib Documentation
Release 1.3.0

Xiaming Chen

Mar 09, 2019

Contents

1 Install 3

2 Useful APIs 5
2.1 Node Objects . 5
2.2 Tree Objects . 6

3 Examples 9
3.1 Basic Usage . 9
3.2 API Examples . 9
3.3 Advanced Usage . 11

4 Indices and tables 13

Python Module Index 15

i

ii

treelib Documentation, Release 1.3.0

Redistributed under Apache License (2.0) since version 1.3.0.

Tree data structure is an important data structure in computer programming languages. It has important applications
where hierarchical data connections are present such as computer folder structure and decision-tree algorithm in Ma-
chine Learning. Thus treelib is created to provide an efficient implementation of tree data structure in Python.

The main features of treelib includes:

• Simple to use in both python 2 and 3.

• Efficient operation of node indexing with the benefit of dictionary type.

• Support various tree operations like traversing, insertion, deletion, node moving, shallow/deep copying,
subtree cutting etc.

• Support user-defined data payload to accelerate your model construction.

• Has pretty tree showing and text/json dump for pretty show and offline analysis.

Contents:

Contents 1

http://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://github.com/caesar0301/pyTree

treelib Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Install

The rapidest way to install treelib is using the package management tools like easy_install or pipwith command

$ sudo easy_install -U treelib

or the setup script

$ sudo python setup.py install

Note: With the package management tools, the hosted version may be falling behind current development branch
on Github. If you encounter some problems, try the freshest version on Github or open issues to let me know your
problem.

3

https://github.com/caesar0301/pyTree
https://github.com/caesar0301/pyTree/issues

treelib Documentation, Release 1.3.0

4 Chapter 1. Install

CHAPTER 2

Useful APIs

This treelib is a simple module containing only two classes: Node and Tree. Tree is a self-contained structure with
some nodes and connected by branches. One tree has and only has one root, while a node (except root) has several
children and merely one parent.

Note: To solve the string compatibility between Python 2.x and 3.x, treelib follows the way of porting Python 3.x
to 2/3. That means, all strings are manipulated as unicode and you do not need u’‘ prefix anymore. The impacted
functions include str(), show() and save2file() routines. But if your data contains non-ascii characters and Python 2.x
is used, you have to trigger the compatibility by declaring unicode_literals in the code:

>>> from __future__ import unicode_literals

2.1 Node Objects

class treelib.Node([tag[, identifier[, expanded]]])
A Node object contains basic properties such as node identifier, node tag, parent node, children nodes etc., and
some operations for a node.

Class attributes are:

Node.ADD
Addition mode for method update_fpointer().

Node.DELETE
Deletion mode for method update_fpointer().

Node.INSERT
Behave in the same way with Node.ADD since version 1.1.

Instance attributes:

node.identifier
The unique ID of a node within the scope of a tree. This attribute can be accessed and modified with . and =
operator respectively.

5

treelib Documentation, Release 1.3.0

node.tag
The readable node name for human. This attribute can be accessed and modified with . and = operator respec-
tively.

node.bpointer
The parent ID of a node. This attribute can be accessed and modified with . and = operator respectively.

node.fpointer
With a getting operator, a list of IDs of node’s children is obtained. With a setting operator, the value can be list,
set, or dict. For list or set, it is converted to a list type by the package; for dict, the keys are treated as the node
IDs.

Instance methods:

node.is_leaf()
Check if the node has children. Return False if the fpointer is empty or None.

node.is_root()
Check if the node is the root of present tree.

node.update_bpointer(nid)
Set the parent (indicated by the nid parameter) of a node.

node.update_fpointer(nid, mode=Node.ADD)
Update the children list with different modes: addition (Node.ADD or Node.INSERT) and deletion
(Node.DELETE).

2.2 Tree Objects

class node.Tree(tree=None, deep=False)
The Tree object defines the tree-like structure based on Node objects. A new tree can be created from scratch
without any parameter or a shallow/deep copy of another tree. When deep=True, a deepcopy operation is
performed on feeding tree parameter and more memory is required to create the tree.

Class attributes are:

Tree.ROOT
Default value for the level parameter in tree’s methods.

Tree.DEPTH
The depth-first search mode for tree.

Tree.WIDTH
The width-first search mode for tree.

Tree.ZIGZAG
The ZIGZAG search mode for tree.

Instance attributes:

tree.root
Get or set the ID of the root. This attribute can be accessed and modified with . and = operator respectively.

Instance methods:

tree.size()
Get the number of nodes in this tree.

tree.contains(nid)
Check if the tree contains given node.

6 Chapter 2. Useful APIs

http://en.wikipedia.org/wiki/Tree_%28data_structure%29

treelib Documentation, Release 1.3.0

tree.parent(nid)
Obtain specific node’s parent (Node instance). Return None if the parent is None or does not exist in the tree.

tree.all_nodes()
Get the list of all the nodes randomly belonging to this tree.

tree.depth()
Get depth of the tree.

tree.leaves(nid)
Get leaves from given node.

tree.add_node(node[, parent])
Add a new node object to the tree and make the parent as the root by default.

tree.create_node(tag[, identifier[, parent]])
Create a new node and add it to this tree.

tree.expand_tree([nid[, mode[, filter[, key[, reverse]]]]]])
Traverse the tree nodes with different modes. nid refers to the expanding point to start; mode refers to the
search mode (Tree.DEPTH, Tree.WIDTH); filter refers to the function of one variable to act on the Node
object; key, reverse are present to sort :class:Node objects at the same level.

tree.get_node(nid)
Get the object of the node with ID of nid An alternative way is using ‘[]’ operation on the tree. But small differ-
ence exists between them: the get_node() will return None if nid is absent, whereas ‘[]’ will raise KeyError.

tree.is_branch(nid)
Get the children (only sons) list of the node with ID == nid.

tree.siblings(nid)
Get all the siblings of given nid.

tree.move_node(source, destination)
Move node (source) from its parent to another parent (destination).

tree.paste(nid, new_tree)
Paste a new tree to an existing tree, with nid becoming the parent of the root of this new tree.

tree.remove_node(nid)
Remove a node and free the memory along with its successors.

tree.link_past_node(nid)
Remove a node and link its children to its parent (root is not allowed).

tree.rsearch(nid[, filter])
Search the tree from nid to the root along links reservedly. Parameter filter refers to the function of one
variable to act on the Node object.

tree.show([nid[, level[, idhidden[, filter[, key[, reverse[, line_type]]]]]]]])
Print the tree structure in hierarchy style. nid refers to the expanding point to start; level refers to the node
level in the tree (root as level 0); idhidden refers to hiding the node ID when printing; filter refers to the
function of one variable to act on the Node object; key, reverse are present to sort Node object in the same
level.

You have three ways to output your tree data, i.e., stdout with show(), plain text file with save2file(),
and json string with to_json(). The former two use the same backend to generate a string of tree structure
in a text graph.

Version >= 1.2.7a: you can also spicify the line_type parameter (now supporting ‘ascii’ [default],
‘ascii-ex’, ‘ascii-exr’, ‘ascii-em’, ‘ascii-emv’, ‘ascii-emh’) to the change graphical form.

2.2. Tree Objects 7

treelib Documentation, Release 1.3.0

tree.subtree(nid)
Return a soft copy of the subtree with nid being the root. The softness means all the nodes are shared between
subtree and the original.

tree.remove_subtree(nid)
Return a subtree with nid being the root, and remove all nodes in the subtree from the original one.

tree.save2file(filename[, nid[, level[, idhidden[, filter[, key[, reverse]]]]]]])
Save the tree into file for offline analysis.

tree.to_json()
To format the tree in a JSON format.

8 Chapter 2. Useful APIs

CHAPTER 3

Examples

3.1 Basic Usage

>>> from treelib import Node, Tree
>>> tree = Tree()
>>> tree.create_node("Harry", "harry") # root node
>>> tree.create_node("Jane", "jane", parent="harry")
>>> tree.create_node("Bill", "bill", parent="harry")
>>> tree.create_node("Diane", "diane", parent="jane")
>>> tree.create_node("Mary", "mary", parent="diane")
>>> tree.create_node("Mark", "mark", parent="jane")
>>> tree.show()
Harry

Bill
Jane

Diane
Mary

Mark

3.2 API Examples

Example 1: Expand a tree with specific mode (Tree.DEPTH [default], Tree.WIDTH, Tree.ZIGZAG).

>>> print(','.join([tree[node].tag for node in \
tree.expand_tree(mode=Tree.DEPTH)]))

Harry,Bill,Jane,Diane,Mary,Mark

Example 2: Expand tree with custom filter.

>>> print(','.join([tree[node].tag for node in \
tree.expand_tree(filter = lambda x: \

(continues on next page)

9

treelib Documentation, Release 1.3.0

(continued from previous page)

x.identifier != 'diane')]))
Harry,Bill,Jane,Mark

Example 3: Get a subtree with the root of ‘diane’.

>>> sub_t = tree.subtree('diane')
>>> sub_t.show()
Diane

Mary

Example 4: Paste a new tree to the original one.

>>> new_tree = Tree()
>>> new_tree.create_node("n1", 1) # root node
>>> new_tree.create_node("n2", 2, parent=1)
>>> new_tree.create_node("n3", 3, parent=1)
>>> tree.paste('bill', new_tree)
>>> tree.show()
Harry

Bill
n1

n2
n3

Jane
Diane

Mary
Mark

Example 5: Remove the existing node from the tree

>>> tree.remove_node(1)
>>> tree.show()
Harry

Bill
Jane

Diane
Mary

Mark

Example 6: Move a node to another parent.

>>> tree.move_node('mary', 'harry')
>>> tree.show()
Harry

Bill
Jane

Diane
Mark

Mary

Example 7: Get the height of the tree.

>>> tree.depth()
2

Example 8: Get the level of a node.

10 Chapter 3. Examples

treelib Documentation, Release 1.3.0

>>> node = tree.get_node("bill")
>>> tree.depth(node)
1

Example 9: Print or dump tree structure. For example, the same tree in basic example can be printed with
‘ascii-em’:

>>> tree.show(line_type="ascii-em")
Harry
Bill
Jane

Diane
Mark

Mary

In the JSON form, to_json() takes optional parameter with_data to trigger if the data field is appended into JSON
string. For example,

>>> print(tree.to_json(with_data=True))
{"Harry": {"data": null, "children": [{"Bill": {"data": null}}, {"Jane": {"data":
→˓null, "children": [{"Diane": {"data": null}}, {"Mark": {"data": null}}]}}, {"Mary":
→˓{"data": null}}]}}

3.3 Advanced Usage

Sometimes, you need trees to store your own data. The newsest version of treelib supports .data variable to
store whatever you want. For example, to define a flower tree with your own data:

>>> class Flower(object): \
def __init__(self, color): \

self.color = color

You can create a flower tree now:

>>> ftree = Tree()
>>> ftree.create_node("Root", "root")
>>> ftree.create_node("F1", "f1", parent='root', data=Flower("white"))
>>> ftree.create_node("F2", "f2", parent='root', data=Flower("red"))

Notes: Before version 1.2.5, you may need to inherit and modify the behaviors of tree. Both are supported since then.
For flower example,

>>> class FlowerNode(treelib.Node): \
def __init__(self, color): \

self.color = color
>>> # create a new node
>>> fnode = FlowerNode("white")

3.3. Advanced Usage 11

treelib Documentation, Release 1.3.0

12 Chapter 3. Examples

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

treelib Documentation, Release 1.3.0

14 Chapter 4. Indices and tables

Python Module Index

t
treelib, 5

15

treelib Documentation, Release 1.3.0

16 Python Module Index

Index

A
ADD (treelib.Node attribute), 5
add_node() (in module tree), 7
all_nodes() (in module tree), 7

B
bpointer (in module node), 6

C
contains() (in module tree), 6
create_node() (in module tree), 7

D
DELETE (treelib.Node attribute), 5
DEPTH (node.Tree attribute), 6
depth() (in module tree), 7

E
expand_tree() (in module tree), 7

F
fpointer (in module node), 6

G
get_node() (in module tree), 7

I
identifier (in module node), 5
INSERT (treelib.Node attribute), 5
is_branch() (in module tree), 7
is_leaf() (in module node), 6
is_root() (in module node), 6

L
leaves() (in module tree), 7
link_past_node() (in module tree), 7

M
move_node() (in module tree), 7

N
Node (class in treelib), 5

P
parent() (in module tree), 6
paste() (in module tree), 7

R
remove_node() (in module tree), 7
remove_subtree() (in module tree), 8
root (in module tree), 6
ROOT (node.Tree attribute), 6
rsearch() (in module tree), 7

S
save2file() (in module tree), 8
show() (in module tree), 7
siblings() (in module tree), 7
size() (in module tree), 6
subtree() (in module tree), 7

T
tag (in module node), 5
to_json() (in module tree), 8
Tree (class in node), 6
treelib (module), 5

U
update_bpointer() (in module node), 6
update_fpointer() (in module node), 6

W
WIDTH (node.Tree attribute), 6

Z
ZIGZAG (node.Tree attribute), 6

17

	Install
	Useful APIs
	Node Objects
	Tree Objects

	Examples
	Basic Usage
	API Examples
	Advanced Usage

	Indices and tables
	Python Module Index

