treelib Documentation
Release 1.5.5

Xiaming Chen

Mar 09, 2019

Contents:

Introduction
Installation

Examples

3.1 Basic Usage . .
3.2 API Examples .

3.3 Advanced Usage

Indices and tables

~N L L

CHAPTER 1

Introduction

Tree is an important data structure in computer science. Examples are shown in ML algorithm designs such as random
forest tree and software engineering such as file system index. treelib is created to provide an efficient implementation
of tree data structure in Python.

The main features of treelib includes:
« Efficient operation of node searching, O(1).

* Support common tree operations like traversing, insertion, deletion, node moving, shallow/deep copy-
ing, subtree cutting etc.

* Support user-defined data payload to accelerate your model construction.
e Pretty tree showing and text/json dump for pretty show and offline analysis.

* Compatible with Python 2 and 3.

http://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://github.com/caesar0301/pyTree

treelib Documentation, Release 1.5.5

2 Chapter 1. Introduction

CHAPTER 2

Installation

The rapidest way to install treelib is using the package management tools like easy_install or pip with command

’$ sudo easy_install -U treelib

or the setup script

’$ sudo python setup.py install

Note: With the package management tools, the hosted version may be falling behind current development branch
on Github. If you encounter some problems, try the freshest version on Github or open issues to let me know your
problem.

https://github.com/caesar0301/pyTree
https://github.com/caesar0301/pyTree/issues

treelib Documentation, Release 1.5.5

4 Chapter 2. Installation

CHAPTER 3

Examples

3.1 Basic Usage

>>> from treelib import Node, Tree
>>> tree = Tree|()
>>> tree.create_node
>>> tree.create_node
>>> tree.create_node
>>> tree.create_node
>>> tree.create_node
>>> tree.create_node
>>> tree.show ()

"Harry", "harry") # root node

"Jane", "jane", parent="harry")
"Bill", "bill", parent="harry")
"Diane", "diane", parent="jane")

n

Mary", "mary", parent="diane")

"Mark", "mark", parent="jane")

Harry
I: Bill
Jane
Diane
[— Mary
Mark

3.2 APl Examples

Example 1: Expand a tree with specific mode (Tree. DEPTH [default], Tree. WIDTH, Tree. ZIGZAG).

>>> print (', '.join([tree[node] .tag for node in \
tree.expand_tree (mode=Tree.DEPTH)]))
Harry,Bill, Jane,Diane,Mary,Mark

Example 2: Expand tree with custom filter.

>>> print (', '.join([tree[node] .tag for node in \
tree.expand_tree(filter = lambda x: \

(continues on next page)

treelib Documentation, Release 1.5.5

(continued from previous page)

x.ldentifier != 'diane')]))
Harry,Bill, Jane,Mark

Example 3: Get a subtree with the root of ‘diane’.

>>> sub_t = tree.subtree('diane')
>>> sub_t.show()

Diane

L Mary

Example 4: Paste a new tree to the original one.

>>> new_tree = Tree /()
>>> new_tree.create_node ("nl", 1) # root node
>>> new_tree.create_node ("n2", 2, parent=1l)
>>> new_tree.create_node ("n3", 3, parent=1l)
>>> tree.paste('bill', new_tree)
>>> tree.show()
Harry

Bill

L— n1

Example 5: Remove the existing node from the tree

>>> tree.remove_node (1)
>>> tree.show()

Harry
|: Bill
Jane
Diane
L Mary
Mark

Example 6: Move a node to another parent.

>>> tree.move_node ('mary', 'harry'")
>>> tree.show()
Harry
Bill
Jane
|: Diane
Mark

Mary

Example 7: Get the height of the tree.

>>> tree.depth ()
2

Example 8: Get the level of a node.

6 Chapter 3. Examples

treelib Documentation, Release 1.5.5

>>> node = tree.get_node("bill")
>>> tree.depth (node)

1

Example 9: Print or dump tree structure. For example, the same tree in basic example can be printed with
‘ascii-em’:

>>> tree.show(line_type="ascii-em")
Harry
Bill
Jane
Diane
Mark
Mary

In the JSON form, to_json() takes optional parameter with_data to trigger if the data field is appended into JSON
string. For example,

>>> print (tree.to_json(with data=True))

{"Harry": {"data": null, "children": [{"Bill": {"data": null}}, {"Jane": {"data":_
—null, "children": [{"Diane": {"data": null}}, {"Mark": {"data": null}}]}}, {"Mary":
—{"data": null}}]}}

Example 10: Save tree into file The function save2file require a filename. The file is opened to write using mode
‘ab’.

’>>> tree.save2file ('tree.txt"')

3.3 Advanced Usage

Sometimes, you need trees to store your own data. The newsest version of treelib supports .data variable to
store whatever you want. For example, to define a flower tree with your own data:

>>> class Flower (object): \
def _ _init__ (self, color): \
self.color = color

You can create a flower tree now:

>>> ftree = Tree ()
>>> ftree.create_node ("Root", "root", data=Flower ("black")

>>> ftree.create_node ("F1", "fl", parent='root', data=Flower ("white"))
>>> ftree.create_node ("F2", "f2", e =Flower ("red")

parent="root',

Printing the colors of the tree:

>>> ftree.show(data_ property="color"
black

|: white
red

Notes: Before version 1.2.5, you may need to inherit and modify the behaviors of tree. Both are supported since then.
For flower example,

3.3. Advanced Usage 7

treelib Documentation, Release 1.5.5

>>> class FlowerNode (treelib.Node) : \

def __init_ (self, color): \
self.color = color
>>> # create a new node
>>> fnode = FlowerNode ("white")

8 Chapter 3. Examples

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

	Introduction
	Installation
	Examples
	Basic Usage
	API Examples
	Advanced Usage

	Indices and tables

