

Welcome to treelib’s documentation!

Introduction

Tree [http://en.wikipedia.org/wiki/Tree_%28data_structure%29] is an
important data structure in computer science. Examples are shown in ML algorithm designs such as random forest tree and software engineering such as file system index. treelib [https://github.com/caesar0301/pyTree] is created to provide an efficient implementation of tree data structure in Python.

	The main features of treelib includes:

	
	Efficient operation of node searching, O(1).

	Support common tree operations like traversing, insertion, deletion, node moving, shallow/deep copying, subtree cutting etc.

	Support user-defined data payload to accelerate your model construction.

	Pretty tree showing and text/json dump for pretty show and offline analysis.

	Compatible with Python 2 and 3.

Installation

The rapidest way to install treelib is using the package management tools like
easy_install or pip with command

$ sudo easy_install -U treelib

or the setup script

$ sudo python setup.py install

Note: With the package management tools, the hosted version may be falling
behind current development branch on Github [https://github.com/caesar0301/pyTree]. If you encounter some problems, try
the freshest version on Github or open issues [https://github.com/caesar0301/pyTree/issues] to let me know your problem.

Examples

Basic Usage

>>> from treelib import Node, Tree
>>> tree = Tree()
>>> tree.create_node("Harry", "harry") # root node
>>> tree.create_node("Jane", "jane", parent="harry")
>>> tree.create_node("Bill", "bill", parent="harry")
>>> tree.create_node("Diane", "diane", parent="jane")
>>> tree.create_node("Mary", "mary", parent="diane")
>>> tree.create_node("Mark", "mark", parent="jane")
>>> tree.show()
Harry
├── Bill
└── Jane
 ├── Diane
 │ └── Mary
 └── Mark

API Examples

Example 1: Expand a tree with specific mode (Tree.DEPTH [default],
Tree.WIDTH, Tree.ZIGZAG).

>>> print(','.join([tree[node].tag for node in \
 tree.expand_tree(mode=Tree.DEPTH)]))
Harry,Bill,Jane,Diane,Mary,Mark

Example 2: Expand tree with custom filter.

>>> print(','.join([tree[node].tag for node in \
 tree.expand_tree(filter = lambda x: \
 x.identifier != 'diane')]))
Harry,Bill,Jane,Mark

Example 3: Get a subtree with the root of ‘diane’.

>>> sub_t = tree.subtree('diane')
>>> sub_t.show()
Diane
└── Mary

Example 4: Paste a new tree to the original one.

>>> new_tree = Tree()
>>> new_tree.create_node("n1", 1) # root node
>>> new_tree.create_node("n2", 2, parent=1)
>>> new_tree.create_node("n3", 3, parent=1)
>>> tree.paste('bill', new_tree)
>>> tree.show()
Harry
├── Bill
│ └── n1
│ ├── n2
│ └── n3
└── Jane
 ├── Diane
 │ └── Mary
 └── Mark

Example 5: Remove the existing node from the tree

>>> tree.remove_node(1)
>>> tree.show()
Harry
├── Bill
└── Jane
 ├── Diane
 │ └── Mary
 └── Mark

Example 6: Move a node to another parent.

>>> tree.move_node('mary', 'harry')
>>> tree.show()
Harry
├── Bill
├── Jane
│ ├── Diane
│ └── Mark
└── Mary

Example 7: Get the height of the tree.

>>> tree.depth()
2

Example 8: Get the level of a node.

>>> node = tree.get_node("bill")
>>> tree.depth(node)
1

	Example 9: Print or dump tree structure. For example, the same tree in

	basic example can be printed with ‘ascii-em’:

>>> tree.show(line_type="ascii-em")
Harry
╠══ Bill
╠══ Jane
║ ╠══ Diane
║ ╚══ Mark
╚══ Mary

In the JSON form, to_json() takes optional parameter with_data to trigger if
the data field is appended into JSON string. For example,

>>> print(tree.to_json(with_data=True))
{"Harry": {"data": null, "children": [{"Bill": {"data": null}}, {"Jane": {"data": null, "children": [{"Diane": {"data": null}}, {"Mark": {"data": null}}]}}, {"Mary": {"data": null}}]}}

	Example 10: Save tree into file

	The function save2file require a filename.
The file is opened to write using mode ‘ab’.

>>> tree.save2file('tree.txt')

Advanced Usage

Sometimes, you need trees to store your own data. The newsest version of
treelib supports .data variable to store whatever you want. For
example, to define a flower tree with your own data:

>>> class Flower(object): \
 def __init__(self, color): \
 self.color = color

You can create a flower tree now:

>>> ftree = Tree()
>>> ftree.create_node("Root", "root", data=Flower("black"))
>>> ftree.create_node("F1", "f1", parent='root', data=Flower("white"))
>>> ftree.create_node("F2", "f2", parent='root', data=Flower("red"))

Printing the colors of the tree:

>>> ftree.show(data_property="color")
 black
 ├── white
 └── red

Notes: Before version 1.2.5, you may need to inherit and modify the behaviors of tree. Both are supported since then. For flower example,

>>> class FlowerNode(treelib.Node): \
 def __init__(self, color): \
 self.color = color
>>> # create a new node
>>> fnode = FlowerNode("white")

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 treelib	

 	
 	
 treelib.exceptions	

 	
 	
 treelib.node	

 	
 	
 treelib.plugins	

 	
 	
 treelib.tree	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

A

 	
 	ADD (treelib.node.Node attribute)

 	add_node() (treelib.tree.Tree method)

 	
 	all_nodes() (treelib.tree.Tree method)

 	all_nodes_itr() (treelib.tree.Tree method)

B

 	
 	bpointer (treelib.node.Node attribute)

C

 	
 	children() (treelib.tree.Tree method)

 	
 	contains() (treelib.tree.Tree method)

 	create_node() (treelib.tree.Tree method)

D

 	
 	data (treelib.node.Node attribute)

 	DELETE (treelib.node.Node attribute)

 	
 	DEPTH (treelib.tree.Tree attribute)

 	depth() (treelib.tree.Tree method)

 	DuplicatedNodeIdError

E

 	
 	expand_tree() (treelib.tree.Tree method)

 	
 	expanded (treelib.node.Node attribute)

 	export_to_dot() (in module treelib.plugins)

F

 	
 	filter_nodes() (treelib.tree.Tree method)

 	
 	fpointer (treelib.node.Node attribute)

G

 	
 	get_node() (treelib.tree.Tree method)

I

 	
 	identifier (treelib.node.Node attribute)

 	INSERT (treelib.node.Node attribute)

 	InvalidLevelNumber

 	
 	is_ancestor() (treelib.tree.Tree method)

 	is_branch() (treelib.tree.Tree method)

 	is_leaf() (treelib.node.Node method)

 	is_root() (treelib.node.Node method)

L

 	
 	leaves() (treelib.tree.Tree method)

 	level() (treelib.tree.Tree method)

 	
 	link_past_node() (treelib.tree.Tree method)

 	LinkPastRootNodeError

 	LoopError

M

 	
 	move_node() (treelib.tree.Tree method)

 	
 	MultipleRootError

N

 	
 	Node (class in treelib.node)

 	node_class (treelib.tree.Tree attribute)

 	NodeIDAbsentError

 	
 	NodePropertyAbsentError

 	NodePropertyError

 	nodes (treelib.tree.Tree attribute)

P

 	
 	parent() (treelib.tree.Tree method)

 	paste() (treelib.tree.Tree method)

 	
 	paths_to_leaves() (treelib.tree.Tree method)

 	python_2_unicode_compatible() (in module treelib.tree)

R

 	
 	remove_node() (treelib.tree.Tree method)

 	remove_subtree() (treelib.tree.Tree method)

 	REPLACE (treelib.node.Node attribute)

 	
 	ROOT (treelib.tree.Tree attribute)

 	root (treelib.tree.Tree attribute)

 	rsearch() (treelib.tree.Tree method)

S

 	
 	save2file() (treelib.tree.Tree method)

 	show() (treelib.tree.Tree method)

 	
 	siblings() (treelib.tree.Tree method)

 	size() (treelib.tree.Tree method)

 	subtree() (treelib.tree.Tree method)

T

 	
 	tag (treelib.node.Node attribute)

 	to_dict() (treelib.tree.Tree method)

 	to_graphviz() (treelib.tree.Tree method)

 	to_json() (treelib.tree.Tree method)

 	Tree (class in treelib.tree)

 	
 	treelib (module)

 	treelib.exceptions (module)

 	treelib.node (module)

 	treelib.plugins (module)

 	treelib.tree (module)

U

 	
 	update_bpointer() (treelib.node.Node method)

 	
 	update_fpointer() (treelib.node.Node method)

 	update_node() (treelib.tree.Tree method)

W

 	
 	WIDTH (treelib.tree.Tree attribute)

Z

 	
 	ZIGZAG (treelib.tree.Tree attribute)

treelib

	treelib package
	Module contents

	Submodules

	treelib.node module

	treelib.tree module

	treelib.plugins module

	treelib.exceptions module

treelib package

Module contents

treelib - Python 2/3 Tree Implementation

treelib is a Python module with two primary classes: Node and Tree.
Tree is a self-contained structure with some nodes and connected by branches.
A tree owns merely a root, while a node (except root) has some children and one parent.

Note: To solve string compatibility between Python 2.x and 3.x, treelib follows
the way of porting Python 3.x to 2/3. That means, all strings are manipulated as
unicode and you do not need u’’ prefix anymore. The impacted functions include str(),
show() and save2file() routines.
But if your data contains non-ascii characters and Python 2.x is used,
you have to trigger the compatibility by declaring unicode_literals in the code:

>>> from __future__ import unicode_literals

Submodules

treelib.node module

Node structure in treelib.

A Node object contains basic properties such as node identifier,
node tag, parent node, children nodes etc., and some operations for a node.

	
class treelib.node.Node(tag=None, identifier=None, expanded=True, data=None)

	Bases: object

Nodes are elementary objects that are stored in the _nodes dictionary of a Tree.
Use data attribute to store node-specific data.

	
ADD = 0

	Mode constants for routine update_fpointer().

	
DELETE = 1

	Mode constants for routine update_fpointer().

	
INSERT = 2

	Mode constants for routine update_fpointer().

	
REPLACE = 3

	Mode constants for routine update_fpointer().

	
bpointer

	The parent ID of a node. This attribute can be
accessed and modified with . and = operator respectively.

	
data = None

	User payload associated with this node.

	
expanded = None

	boolean

	
fpointer

	With a getting operator, a list of IDs of node’s children is obtained. With
a setting operator, the value can be list, set, or dict. For list or set,
it is converted to a list type by the package; for dict, the keys are
treated as the node IDs.

	
identifier

	The unique ID of a node within the scope of a tree. This attribute can be
accessed and modified with . and = operator respectively.

	
is_leaf()

	Return true if current node has no children.

	
is_root()

	Return true if self has no parent, i.e. as root.

	
tag

	The readable node name for human. This attribute can be accessed and
modified with . and = operator respectively.

	
update_bpointer(nid)

	Set the parent (indicated by the nid parameter) of a node.

	
update_fpointer(nid, mode=0, replace=None)

	Update the children list with different modes: addition (Node.ADD or
Node.INSERT) and deletion (Node.DELETE).

treelib.tree module

Tree structure in treelib.

The Tree object defines the tree-like structure based on Node objects.
A new tree can be created from scratch without any parameter or a shallow/deep copy of another tree.
When deep=True, a deepcopy operation is performed on feeding tree parameter and more memory
is required to create the tree.

	
class treelib.tree.Tree(tree=None, deep=False, node_class=None)

	Bases: object

Tree objects are made of Node(s) stored in _nodes dictionary.

	
DEPTH = 1

	ROOT, DEPTH, WIDTH, ZIGZAG constants :

	
ROOT = 0

	ROOT, DEPTH, WIDTH, ZIGZAG constants :

	
WIDTH = 2

	ROOT, DEPTH, WIDTH, ZIGZAG constants :

	
ZIGZAG = 3

	ROOT, DEPTH, WIDTH, ZIGZAG constants :

	
add_node(node, parent=None)

	Add a new node object to the tree and make the parent as the root by default.

The ‘node’ parameter refers to an instance of Class::Node.

	
all_nodes()

	Return all nodes in a list

	
all_nodes_itr()

	Returns all nodes in an iterator.
Added by William Rusnack

	
children(nid)

	Return the children (Node) list of nid.
Empty list is returned if nid does not exist

	
contains(nid)

	Check if the tree contains node of given id

	
create_node(tag=None, identifier=None, parent=None, data=None)

	Create a child node for given @parent node. If identifier is absent,
a UUID will be generated automatically.

	
depth(node=None)

	Get the maximum level of this tree or the level of the given node.

@param node Node instance or identifier
@return int
@throw NodeIDAbsentError

	
expand_tree(nid=None, mode=1, filter=None, key=None, reverse=False, sorting=True)

	Python generator to traverse the tree (or a subtree) with optional
node filtering and sorting.

Loosely based on an algorithm from ‘Essential LISP’ by John R. Anderson,
Albert T. Corbett, and Brian J. Reiser, page 239-241.

	Parameters

	
	nid – Node identifier from which tree traversal will start.
If None tree root will be used

	mode – Traversal mode, may be either DEPTH, WIDTH or ZIGZAG

	filter – the @filter function is performed on Node object during
traversing. In this manner, the traversing will NOT visit the node
whose condition does not pass the filter and its children.

	key – the @key and @reverse are present to sort nodes at each
level. If @key is None sorting is performed on node tag.

	reverse – if True reverse sorting

	sorting – if True perform node sorting, if False return
nodes in original insertion order. In latter case @key and
@reverse parameters are ignored.

	Returns

	Node IDs that satisfy the conditions

	Return type

	generator object

	
filter_nodes(func)

	Filters all nodes by function.

	Parameters

	func – is passed one node as an argument and that node is included if function returns true,

	Returns

	a filter iterator of the node in python 3 or a list of the nodes in python 2.

Added by William Rusnack.

	
get_node(nid)

	Get the object of the node with ID of nid.

An alternative way is using ‘[]’ operation on the tree. But small difference exists between them:
get_node() will return None if nid is absent, whereas ‘[]’ will raise KeyError.

	
is_ancestor(ancestor, grandchild)

	Check if the @ancestor the preceding nodes of @grandchild.

	Parameters

	
	ancestor – the node identifier

	grandchild – the node identifier

	Returns

	True or False

	
is_branch(nid)

	Return the children (ID) list of nid.
Empty list is returned if nid does not exist

	
leaves(nid=None)

	Get leaves of the whole tree or a subtree.

	
level(nid, filter=None)

	Get the node level in this tree.
The level is an integer starting with ‘0’ at the root.
In other words, the root lives at level ‘0’;

Update: @filter params is added to calculate level passing
exclusive nodes.

	
link_past_node(nid)

	Delete a node by linking past it.

For example, if we have a -> b -> c and delete node b, we are left
with a -> c.

	
move_node(source, destination)

	Move node @source from its parent to another parent @destination.

	
node_class

	alias of treelib.node.Node

	
nodes

	Return a dict form of nodes in a tree: {id: node_instance}.

	
parent(nid)

	Get parent Node object of given id.

	
paste(nid, new_tree, deep=False)

	Paste a @new_tree to the original one by linking the root
of new tree to given node (nid).

Update: add @deep copy of pasted tree.

	
paths_to_leaves()

	Use this function to get the identifiers allowing to go from the root
nodes to each leaf.

	Returns

	a list of list of identifiers, root being not omitted.

For example:

Harry
|___ Bill
|___ Jane
| |___ Diane
| |___ George
| |___ Jill
| |___ Mary
| |___ Mark

Expected result:

[['harry', 'jane', 'diane', 'mary'],
 ['harry', 'jane', 'mark'],
 ['harry', 'jane', 'diane', 'george', 'jill'],
 ['harry', 'bill']]

	
remove_node(identifier)

	Remove a node indicated by ‘identifier’; all the successors are
removed as well.

Return the number of removed nodes.

	
remove_subtree(nid)

	Get a subtree with nid being the root. If nid is None, an
empty tree is returned.

For the original tree, this method is similar to
remove_node(self,nid), because given node and its children
are removed from the original tree in both methods.
For the returned value and performance, these two methods are
different:

	remove_node returns the number of deleted nodes;

	remove_subtree returns a subtree of deleted nodes;

You are always suggested to use remove_node if your only to
delete nodes from a tree, as the other one need memory
allocation to store the new tree.

	Returns

	a Tree object.

	
root = None

	Get or set the identifier of the root. This attribute can be accessed and modified
with . and = operator respectively.

	
rsearch(nid, filter=None)

	Traverse the tree branch along the branch from nid to its
ancestors (until root).

	Parameters

	filter – the function of one variable to act on the Node object.

	
save2file(filename, nid=None, level=0, idhidden=True, filter=None, key=None, reverse=False, line_type=u'ascii-ex', data_property=None)

	Save the tree into file for offline analysis.

	
show(nid=None, level=0, idhidden=True, filter=None, key=None, reverse=False, line_type=u'ascii-ex', data_property=None)

	Print the tree structure in hierarchy style.

You have three ways to output your tree data, i.e., stdout with show(),
plain text file with save2file(), and json string with to_json(). The
former two use the same backend to generate a string of tree structure in a
text graph.

	Version >= 1.2.7a*: you can also specify the line_type parameter, such as ‘ascii’ (default), ‘ascii-ex’, ‘ascii-exr’, ‘ascii-em’, ‘ascii-emv’, ‘ascii-emh’) to the change graphical form.

	Parameters

	
	nid – the reference node to start expanding.

	level – the node level in the tree (root as level 0).

	idhidden – whether hiding the node ID when printing.

	filter – the function of one variable to act on the Node object.
When this parameter is specified, the traversing will not continue to following
children of node whose condition does not pass the filter.

	key – the key param for sorting Node objects in the same level.

	reverse – the reverse param for sorting Node objects in the same level.

	line_type –

	data_property – the property on the node data object to be printed.

	Returns

	None

	
siblings(nid)

	Return the siblings of given @nid.

If @nid is root or there are no siblings, an empty list is returned.

	
size(level=None)

	Get the number of nodes of the whole tree if @level is not
given. Otherwise, the total number of nodes at specific level
is returned.

@param level The level number in the tree. It must be between
[0, tree.depth].

Otherwise, InvalidLevelNumber exception will be raised.

	
subtree(nid)

	Return a shallow COPY of subtree with nid being the new root.
If nid is None, return an empty tree.
If you are looking for a deepcopy, please create a new tree
with this shallow copy, e.g.,

new_tree = Tree(t.subtree(t.root), deep=True)

This line creates a deep copy of the entire tree.

	
to_dict(nid=None, key=None, sort=True, reverse=False, with_data=False)

	Transform the whole tree into a dict.

	
to_graphviz(filename=None, shape=u'circle', graph=u'digraph')

	Exports the tree in the dot format of the graphviz software

	
to_json(with_data=False, sort=True, reverse=False)

	To format the tree in JSON format.

	
update_node(nid, **attrs)

	Update node’s attributes.

	Parameters

	
	nid – the identifier of modified node

	attrs – attribute pairs recognized by Node object

	Returns

	None

	
treelib.tree.python_2_unicode_compatible(klass)

	(slightly modified from: http://django.readthedocs.org/en/latest/_modules/django/utils/encoding.html)

A decorator that defines __unicode__ and __str__ methods under Python 2.
Under Python 3 it does nothing.

To support Python 2 and 3 with a single code base, define a __str__ method
returning text and apply this decorator to the class.

treelib.plugins module

This is a public location to maintain contributed
utilities to extend the basic Tree class.

Deprecated! We prefer a unified processing of Tree object.

	
treelib.plugins.export_to_dot(tree, filename=None, shape=u'circle', graph=u'digraph')

	Exports the tree in the dot format of the graphviz software

treelib.exceptions module

	
exception treelib.exceptions.DuplicatedNodeIdError

	Bases: exceptions.Exception

Exception throwed if an identifier already exists in a tree.

	
exception treelib.exceptions.InvalidLevelNumber

	Bases: exceptions.Exception

	
exception treelib.exceptions.LinkPastRootNodeError

	Bases: exceptions.Exception

Exception throwed in Tree.link_past_node() if one attempts
to “link past” the root node of a tree.

	
exception treelib.exceptions.LoopError

	Bases: exceptions.Exception

Exception thrown if trying to move node B to node A’s position
while A is B’s ancestor.

	
exception treelib.exceptions.MultipleRootError

	Bases: exceptions.Exception

Exception throwed if more than one root exists in a tree.

	
exception treelib.exceptions.NodeIDAbsentError

	Bases: treelib.exceptions.NodePropertyError

Exception throwed if a node’s identifier is unknown

	
exception treelib.exceptions.NodePropertyAbsentError

	Bases: treelib.exceptions.NodePropertyError

Exception throwed if a node’s data property is not specified

	
exception treelib.exceptions.NodePropertyError

	Bases: exceptions.Exception

Basic Node attribute error

 nav.xhtml

 Table of Contents

 		
 Welcome to treelib’s documentation!

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

